Experimental cancer treatment

Experimental cancer treatments are medical therapies intended or claimed to treat cancer (see also tumor) by improving on, supplementing or replacing conventional methods (surgery, chemotherapy, radiation, and immunotherapy).

The entries listed below vary between theoretical therapies to unproven controversial therapies. Many of these treatments are alleged to help against only specific forms of cancer. It is not a list of treatments widely available at hospitals.

Contents

Studying treatments for cancer

The twin goals of research are to determine whether the treatment actually works (called efficacy) and whether it is sufficiently safe. Regulatory processes attempt to balance the potential benefits with the potential harms, so that people given the treatment are more likely to benefit from it than to be harmed by it.

Medical research for cancer begins much like research for any disease. In organized studies of new treatments for cancer, the pre-clinical development of drugs, devices, and techniques begins in laboratories, either with isolated cells or in small animals, most commonly rats or mice. In other cases, the proposed treatment for cancer is already in use for some other medical condition, in which case more is known about its safety and potential efficacy.

Clinical trials are the study of treatments in humans. The first-in-human tests of a potential treatment are called Phase I studies. Early clinical trials typically enroll a very small number of patients, and the purpose is to identify major safety issues and the maximum tolerated dose, which is the highest dose that does not produce serious or fatal adverse effects. The dose given in these trials may be far too small to produce any useful effect. In most research, these early trials may involve healthy people, but cancer studies normally enroll only people with relatively severe forms of the disease in this stage of testing. On average, 95% of the participants in these early trials receive no benefit, but all are exposed to the risk of adverse effects.[1] Most participants show signs of optimism bias (the irrational belief that they will beat the odds).

Later studies, called Phase II and Phase III studies, enroll more people, and the goal is to determine whether the treatment actually works. Phase III studies are frequently randomized controlled trials, with the experimental treatment being compared to the current best available treatment rather than to a placebo. In some cases, the Phase III trial provides the best available treatment to all participants, in addition to some of the patients receiving the experimental treatment.

Bacterial treatments

Chemotherapeutic drugs have a hard time penetrating tumors to kill them at their core because these cells may lack a good blood supply. Researchers have been using anaerobic bacteria, such as Clostridium novyi, to consume the interior of oxygen-poor tumours. These should then die when they come in contact with the tumour's oxygenated sides, meaning they would be harmless to the rest of the body. A major problem has been that bacteria do not consume all parts of the malignant tissue. However combining the therapy with chemotheraputic treatments can help to solve this problem.

Another strategy is to use anaerobic bacteria that have been transformed with an enzyme that can convert a non-toxic prodrug into a toxic drug. With the proliferation of the bacteria in the necrotic and hypoxic areas of the tumour, the enzyme is expressed solely in the tumour. Thus, a systemically applied prodrug is metabolised to the toxic drug only in the tumour. This has been demonstrated to be effective with the nonpathogenic anaerobe Clostridium sporogenes.[2]

Drug therapies

HAMLET (human alpha-lactalbumin made lethal to tumor cells)

HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a molecular complex derived from human breast milk that kills tumor cells by a process resembling programmed cell death (apoptosis). It has been tested in humans with skin papillomas and bladder cancer.[3]

Dichloroacetate

Dichloroacetate (DCA) has been found to shrink tumors in vitro in rats, and has a plausible scientific mechanism: DCA appears to reactivate suppressed mitochondria in some types of oxygen-starved tumor cells, and thus promotes apoptosis.[4] Because it was tested for other conditions, DCA is known to be relatively safe, available, and inexpensive, and it can be taken by mouth as a pill, which is convenient. Early animal studies received attention in the media,[5] and some doctors began controversially using the chemical off-label.[6] As of 2008, no patients had been treated with DCA in a clinical trial, and so its actual effectiveness is unknown.

Quercetin

In vitro, quercetin shows some antitumor activity. Cultured skin and prostate cancer cells showed significant mortality (compared to nonmalignant cells) when treated with a combination of quercetin and ultrasound[7] Note that ultrasound also promotes topical absorption by up to 1,000 times, making the use of topical quercetin and ultrasound wands an interesting proposition.

High dietary intake of fruits and vegetables is associated with reduction in cancer, and some scientists suspect quercetin may be partly responsible. Research shows that quercetin influences cellular mechanisms in vitro and in animal studies, and there is limited evidence from human population studies that quercetin may reduce the risk of lung cancer.[8][9]

Insulin potentiation therapy

In insulin potentiation therapy (IPT), insulin is a controversial supplement to low-dose chemotherapy. Its proponents claim insulin therapy increases the uptake of chemotherapeutic drugs by malignant cells, permitting the use of lower total drug doses and reducing side-effects.

The first clinical trial, involving 30 women with breast cancer, combined insulin with low-dose methotrexate (a common chemotherapy drug) resulted in greatly increased stable disease, and much reduced progressive disease, compared with insulin or low-dose methotrexate alone.[10]

Drugs that restore p53 activity

Several drug therapies are being developed based on p53, the tumour suppressor gene that protects the cell in response to damage and stress. It is analogous to deciding what to do with a damaged car: p53 brings everything to a halt, and then decides whether to fix the cell or, if the cell is beyond repair, to destroy the cell. This protective function of p53 is disabled in most cancer cells, allowing them to multiply without check. Restoration of p53 activity in tumours (where possible) has been shown to inhibit tumour growth and can even shrink the tumour.[11][12][13]

As p53 protein levels are usually kept low, one could block its degradation and allow large amounts of p53 to accumulate, thus stimulating p53 activity and its antitumour effects. Drugs that utilize this mechanism include nutlin and MI-219, which are both in phase I clinical trials.[14] There are also other drugs that are still in the preclinical stage of testing, such as RITA [15] and MITA.[16]

BI811283

BI811283 is a small molecule inhibitor of the Aurora B kinase protein being developed by Boehringer Ingelheim for use as an anti-cancer agent. BI 811283 is currently in the early stages of clinical development and is undergoing first-in-human trials in patients with solid tumors and Acute Myeloid Leukaemia. [17]

Gene therapy

Introduction of tumor suppressor genes into rapidly dividing cells has been thought to slow down or arrest tumor growth. Adenoviruses are a commonly utilized vector for this purpose. Much research has focused on the use of adenoviruses that cannot reproduce, or reproduce only to a limited extent, within the patient to ensure safety via the avoidance of cytolytic destruction of noncancerous cells infected with the vector. However, new studies focus on adenoviruses that can be permitted to reproduce, and destroy cancerous cells in the process, since the adenoviruses' ability to infect normal cells is substantially impaired, potentially resulting in a far more effective treatment.[18][19] Another use of gene therapy is the introduction of enzymes into these cells that make them susceptible to particular chemotherapy agents; studies with introducing thymidine kinase in gliomas, making them susceptible to aciclovir, are in their experimental stage.

Telomerase therapy

Because most malignant cells rely on the activity of the protein telomerase for their immortality, it has been proposed that a drug that inactivates telomerase might be effective against a broad spectrum of malignancies. At the same time, most healthy tissues in the body express little if any telomerase, and would function normally in its absence. Currently, Inositol hexaphosphate, which is available over-the-counter, is undergoing testing in cancer research due to its telomerase-inhibiting abilities.[20]

A number of research groups have experimented with the use of telomerase inhibitors in animal models, and as of 2005 and 2006 phase I and II human clinical trials are underway. Geron Corporation, is currently conducting two clinical trials involving telomerase inhibitors. One uses a vaccine (GRNVAC1) and the other uses a lipidated oligonucleotide(GRN163L).

Radiation therapies

Photodynamic therapy

Photodynamic therapy (PDT) is generally a non-invasive treatment using a combination of light and a photosensitive drug, such as 5-ALA, Foscan, Metvix, Tookad, WST09, WST11, Photofrin, or Visudyne. The drug is triggered by light of a specific wavelength.

Hyperthermia therapy

Localized and whole-body application of heat has been proposed as a technique for the treatment of malignant tumours. Intense heating will cause denaturation and coagulation of cellular proteins, rapidly killing cells within a tumour.

More prolonged moderate heating to temperatures just a few degrees above normal can cause more subtle changes. A mild heat treatment combined with other stresses can cause cell death by apoptosis. There are many biochemical consequences to the heat shock response within in cell, including slowed cell division and increased sensitivity to ionizing radiation therapy.

There are many techniques by which heat may be delivered. Some of the most common involve the use of focused ultrasound (FUS or HIFU), microwave heating, induction heating, magnetic hyperthermia, and direct application of heat through the use of heated saline pumped through catheters. Experiments with carbon nanotubes that selectively bind to cancer cells have been performed. Lasers are then used that pass harmlessly through the body, but heat the nanotubes, causing the death of the cancer cells. Similar results have also been achieved with other types of nanoparticles, including gold-coated nanoshells and nanorods that exhibit certain degrees of 'tunability' of the absorption properties of the nanoparticles to the wavelength of light for irradiation. The success of this approach to cancer treatment rests on the existence of an 'optical window' in which biological tissue (i.e., healthy cells) are completely transparent at the wavelength of the laser light, while nanoparticles are highly absorbing at the same wavelength. Such a 'window' exists in the so-called near-infrared region of the electromagnetic spectrum. In this way, the laser light can pass through the system without harming healthy tissue, and only diseased cells, where the nanoparticles reside, get hot and are killed.

Magnetic hyperthermia makes use of magnetic nanoparticles, which can be injected into tumours and then generate heat when subjected to an alternating magnetic field.[21]

One of the challenges in thermal therapy is delivering the appropriate amount of heat to the correct part of the patient's body. A great deal of current research focuses on precisely positioning heat delivery devices (catheters, microwave, and ultrasound applicators, etc.) using ultrasound or magnetic resonance imaging, as well as of developing new types of nanoparticles that make them particularly efficient absorbers while offering little or no concerns about toxicity to the circulation system. Clinicians also hope to use advanced imaging techniques to monitor heat treatments in real time—heat-induced changes in tissue are sometimes perceptible using these imaging instruments.

Non-invasive RF cancer treatment

This preclinical treatment involves using radio waves to heat up tiny metals that are implanted in cancerous tissue. Gold nanoparticles or carbon nanotubes are the most likely candidate. Promising preclinical trials have been conducted,[22][23] although clinical trials may not be held for another few years.[24]

Complementary and alternative treatments

Complementary and alternative medicine (CAM) treatments are the diverse group of medical and healthcare systems, practices, and products that are not part of conventional medicine and have not been shown to be effective.[25] Complementary medicine usually refers to methods and substances used along with conventional medicine, while alternative medicine refers to compounds used instead of conventional medicine.[26] CAM use is common among people with cancer.[27]

Most complementary and alternative medicines for cancer have not been rigorously studied or tested. Some alternative treatments that have been proven ineffective continue to be marketed and promoted.[28]

References

  1. ^ Chen, Pauline W. (3 March 2011). "When Optimism Is Unrealistic". The New York Times. http://www.nytimes.com/2011/03/03/health/views/03chen.html. 
  2. ^ Mengesha (2009). "Clostridia in Anti-tumor Therapy". Clostridia: Molecular Biology in the Post-genomic Era. Caister Academic Press. ISBN 978-1-904455-38-7. 
  3. ^ Hallgren O, Aits S, Brest P, Gustafsson L, Mossberg AK, Wullt B, Svanborg C. (2008). "Apoptosis and tumor cell death in response to HAMLET (human alpha-lactalbumin made lethal to tumor cells)". Advances in Experimental Medicine and Biology.. Advances in Experimental Medicine and Biology 606: 217–240. doi:10.1007/978-0-387-74087-4_8. ISBN 978-0-387-74086-7. PMID 18183931. 
  4. ^ Michelakis ED, Webster L, Mackey JR (October 2008). "Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer". Br. J. Cancer 99 (7): 989–94. doi:10.1038/sj.bjc.6604554. PMC 2567082. PMID 18766181. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2567082. 
  5. ^ "Cheap, ‘safe’ drug kills most cancers". New Scientist. 2007-01-17. http://www.newscientist.com/article.ns?id=dn10971. Retrieved 2007-01-17. 
  6. ^ http://www.nationalreviewofmedicine.com/issue/poll/featured_article.html
  7. ^ Paliwal S; Sundaram, J; Mitragotri, S (2005). "Induction of cancer-specific cytotoxicity towards human prostate and skin cells using quercetin and ultrasound". British Journal of Cancer 92 (3): 499–502. doi:10.1038/sj.bjc.6602364. PMC 2362095. PMID 15685239. http://www.nature.com/bjc/journal/v92/n3/abs/6602364a.html. 
  8. ^ Neuhouser ML (2004). "Dietary flavonoids and cancer risk: evidence from human population studies". Nutr Cancer 50 (1): 1–7. doi:10.1207/s15327914nc5001_1. PMID 15572291. 
  9. ^ Murakami A, Ashida H, Terao J (October 2008). "Multitargeted cancer prevention by quercetin". Cancer Lett. 269 (2): 315–25. doi:10.1016/j.canlet.2008.03.046. PMID 18467024. 
  10. ^ Lasalvia-Prisco E, Cucchi S, Vázquez J, Lasalvia-Galante E, Golomar W, Gordon W (March 2004). "Insulin-induced enhancement of antitumoral response to methotrexate in breast cancer patients". Cancer Chemother. Pharmacol. 53 (3): 220–4. doi:10.1007/s00280-003-0716-7. PMID 14655024. 
  11. ^ Martins CP, Brown-Swigart L, Evan GI (December 2006). "Modeling the therapeutic efficacy of p53 restoration in tumors". Cell 127 (7): 1323–34. doi:10.1016/j.cell.2006.12.007. PMID 17182091. 
  12. ^ Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, Newman J, Reczek EE, Weissleder R, Jacks T (February 2007). "Restoration of p53 function leads to tumour regression in vivo". Nature 445 (7128): 606–7. doi:10.1038/nature05541. PMID 17251932. 
  13. ^ Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe SW (February 2007). "Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas". Nature 445 (7128): 656–60. doi:10.1038/nature05529. PMID 17251933. 
  14. ^ Brown CJ, Lain S, Verma CS, Fersht AR, Lane DP (December 2009). "Awakening guardian angels: drugging the p53 pathway". Nat Rev Cancer 9 (12): 862–73. doi:10.1038/nrc2763. PMID 19935675. 
  15. ^ Issaeva N, Bozko P, Enge M, Protopopova M, Verhoef LG, Masucci M, Pramanik A, Selivanova G (December 2004). "Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors". Nat Med 10 (12): 1321–8. doi:10.1038/nm1146. PMID 15558054. 
  16. ^ Hedström E, Issaeva N, Enge M, Selivanova G (February 2009). "Tumor-specific induction of apoptosis by a p53-reactivating compound". Exp Cell Res 315 (3): 451–61. doi:10.1016/j.yexcr.2008.11.009. PMID 19071110. 
  17. ^ Gürtler, U.; U. Tontsch-Grunt, M. Jarvis, S.K. Zahn, G. Boehmelt, J. Quant, G.R. Adolf, F. Solca (2010). "Effect of BI 811283, a novel inhibitor of Aurora B kinase, on tumor senescence and apoptosis". J. Clin. Oncol. 28 (15 Suppl e13632). 
  18. ^ Rein DT, Breidenbach M, Curiel DT (February 2006). "Current developments in adenovirus-based cancer gene therapy". Future Oncol 2 (1): 137–43. doi:10.2217/14796694.2.1.137. PMC 1781528. PMID 16556080. http://www.futuremedicine.com/doi/abs/10.2217/14796694.2.1.137?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dncbi.nlm.nih.gov. 
  19. ^ Kanerva A, Lavilla-Alonso S, Raki M et al. (2008). Lewin, Alfred. ed. "Systemic Therapy for Cervical Cancer with Potentially Regulatable Oncolytic Adenoviruses". PLoS ONE 3 (8): e2917. doi:10.1371/journal.pone.0002917. PMC 2500220. PMID 18698374. http://dx.plos.org/10.1371/journal.pone.0002917. 
  20. ^ Jagadeesh S, Banerjee PP (November 2006). "Inositol hexaphosphate represses telomerase activity and translocates TERT from the nucleus in mouse and human prostate cancer cells via the deactivation of Akt and PKCalpha". Biochem. Biophys. Res. Commun. 349 (4): 1361–7. doi:10.1016/j.bbrc.2006.09.002. PMID 16979586. 
  21. ^ Hyperthermia - Cancer therapy hots up on physics.org
  22. ^ David Templeton (2007-01-18). "Research on local man's cancer treatment idea shows it has promise". Pittsburgh Post-Gazette. http://www.post-gazette.com/pg/07018/754702-114.stm. Retrieved 2007-11-04. 
  23. ^ Gannon CJ, Cherukuri P, Yakobson BI et al. (December 2007). "Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field". Cancer 110 (12): 2654–65. doi:10.1002/cncr.23155. PMID 17960610. 
  24. ^ "The cure to cancer could be in your radio!". Winknews.com. 2007. http://www.winknews.com/features/health/10949561.html. Retrieved 2007-11-01. 
  25. ^ Cassileth BR, Deng G (2004). "Complementary and alternative therapies for cancer". Oncologist 9 (1): 80–9. doi:10.1634/theoncologist.9-1-80. PMID 14755017. http://theoncologist.alphamedpress.org/cgi/content/full/9/1/80. 
  26. ^ What Is CAM? National Center for Complementary and Alternative Medicine. retrieved 3 February 2008.
  27. ^ Richardson MA, Sanders T, Palmer JL, Greisinger A, Singletary SE (1 July 2000). "Complementary/alternative medicine use in a comprehensive cancer center and the implications for oncology". J. Clin. Oncol. 18 (13): 2505–14. PMID 10893280. http://jco.ascopubs.org/cgi/content/full/18/13/2505. 
  28. ^ Vickers A (2004). "Alternative cancer cures: "unproven" or "disproven"?". CA Cancer J Clin 54 (2): 110–8. doi:10.3322/canjclin.54.2.110. PMID 15061600. http://caonline.amcancersoc.org/cgi/content/full/54/2/110. 

External links